Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present 0.″22 resolution CO(2–1) observations of the circumnuclear gas disk in the local compact galaxy NGC 384 with the Atacama Large Millimeter/submillimeter Array (ALMA). While the majority of the disk displays regular rotation with projected velocities rising to 370 km s−1, the inner ∼0.″5 exhibits a kinematic twist. We develop warped disk gas-dynamical models to account for this twist, fit those models to the ALMA data cube, and find a stellar mass-to-light ratio in theHband ofM/LH= 1.34 ± 0.01 [1σstatistical] ±0.02 [systematic]M⊙/L⊙and a supermassive black hole (BH) mass (MBH) ofMBH . In contrast to most previous dynamicalMBHmeasurements in local compact galaxies, which typically found over-massive BHs compared to the local BH mass−bulge luminosity and BH mass−bulge mass relations, NGC 384 lies within the scatter of those scaling relations. NGC 384 and other local compact galaxies are likely relics ofz∼ 2 red nuggets, and over-massive BHs in these relics indicate BH growth may conclude before the host galaxy stars have finished assembly. Our NGC 384 results may challenge this evolutionary picture, suggesting there may be increased scatter in the scaling relations than previously thought. However, this scatter could be inflated by systematic differences between stellar- and gas-dynamical measurement methods, motivating direct comparisons between the methods for NGC 384 and the other compact galaxies in the sample.more » « less
-
Abstract We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km s−1. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (MBH) is measured to beMBH= (1.91 ± 0.04 [1σstatistical] [systematic]) × 109M⊙, and theH-band stellar mass-to-light ratioM/LH= 1.620 ± 0.004 [1σstatistical] [systematic]M⊙/L⊙. ThisMBHis consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics ofz∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. AdditionalMBHmeasurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies.more » « less
-
Abstract X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the Hβlag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags.more » « less
An official website of the United States government
